大数据电脑系统开发方案-大数据电脑系统开发方案
1.大数据怎么样需要学习什么知识?
2.大数据开发需要做到什么呢
3.大数据如何入门
大数据怎么样需要学习什么知识?
大数据是目前和今后的热门技术,前途看好。
学习大数据要根据自身情况来定,如果你是零基础,那就必须先从基础Java开始学起(大数据支持很多开发语言,但企业用的最多的还是JAVA),接下来学习数据结构、Linux系统操作、关系型数据库,夯实基础之后,再进入大数据的学习,具体可以按照如下体系:
第一阶段
CORE JAVA (加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型,运算符、循环,算法,顺序结构程序设计,程序结构,数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常,File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述,安装Linux操作系统,图形界面操作基础,Linux字符界面基础,字符界面操作进阶,用户、组群和权限管理,文件系统管理,软件包管理与系统备份,Linux网络配置 (主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养动手能力。了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计,SQL语句,Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础,HDFS,MapReduce,分布式集群,Hive,Hbase,Sqoop
,Pig,Storm实时数据处理平台,Spark平台
以上就是笔者总结学习阶段,如果还想了解更多的知识,还可以关注一些如“大数据cn”这类公众号,建议每个想要学习大数据的人,按照这个学习阶段循序渐进,不断完善自己的知识架构,提升自身的理论知识,然后找一个合适的项目,跟着团队去做项目,积累自己的经验,相信会在大数据的舞台上展现出很好的自己!
大数据开发需要做到什么呢
一般情况下,如果只能解决大数据开发,或者只能使用数据库结构和算法,这些技术是不能成为一名优秀的工程师的。那么如果想要成为大数据开发工程师需要做到什么呢?下面昌平北大青鸟为大家介绍如何成为顶尖的大数据开发工程师。
1、乐于学习
一般工程师通常只在需要某种技能的情况下才开始进行学习。优秀的工程师会对各种知识保持开放的学习状态。
2、务实但不固执
很少有开发人员能够遵守大数据的开发规范,主要是因为大型数据开发规范不是由专业程序开发人员进行编写。但是一定要铭记,北大青鸟工程师的任务是制定解决方案,而不是生产一种展示完美技术的艺术品。
3、真正认识到问题
有很多问题是情绪上的,你必须以剥洋葱的方式对重点进行探讨,不能只依靠搜索引擎和论坛,这样更加浪费时间。因此,IT培训建议找出如何分析问题根源的方法,并对问题有全面认识,通过深入分析和探讨,可以得到相关线索和解决方案。
4、拥有十足的热情
如果对大数据开发的没有兴趣,想要成为顶尖的数据开发人是不可能的。兴趣是最好的老师,拥有兴趣才能让自己走的更远。
5、先思考在行动
大多数数据开发人员都会犯同一个错误,就是在系统分析尚未完成之前,就一直对程序语法进行规划。优秀的开发者在面对问题的时候,电脑培训认为首先就是进行思考、计划和研究,然后再进行行动。
大数据如何入门
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。